If You Share It, Will They Come? Quantifying and Characterizing Reuse of Biomedical Research Data

> Lisa Federer, PhD, MLIS Data Science and Open Science Librarian Office of Strategic Initiatives National Library of Medicine National Institutes of Health

Image source: free photobank torange.biz (CC-BY)

#### Overview



Background: where did all these datasets come from?



#### Methods



Findings: what happens with these datasets once they're shared?



#### Implications





Cost per Genome \$100M \*\*\*\*\* \$10M Moore's Law \$1M \$100K National Human Genome NIH \$10K Research Institute genome.gov/sequencingcosts \$1K 20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Image source: National Human Genome Research Institute

Cheaper and faster data generation





FOUNDATION

#### National Institutes of Health

- The primary biomedical and public health research agency of the United States
  - 27 Institutes and Centers focused on diseases, organ systems, and types of research
  - Invests nearly \$37.3 billion annually in medical research
- Extramural research program: awards more than 50,000 competitive grants annually to research in every US state and around the world
- Intramural research program
  - World's largest biomedical research institution
  - Nearly 6,000 scientists, primarily at the NIH campus in Bethesda, Maryland



# *National Library of Medicine*

- An Institute of the NIH (1968)
  - Lead, conduct, and support research and training in biomedical:
    - Information science
    - Informatics
    - Data science
- The world's largest biomedical library (1836)
  - Create & host major resources, tools, & services for literature, data, standards, & more
    - Send > 115 terabytes of data to > 5 million users daily
    - Receive > 15 terabytes of data from > 3,000 users daily
  - Facilitate open science & scholarship by making digital research objects:
    - Findable, Accessible, Interoperable, & Reusable (FAIR)
    - As well as Attributable & Sustainable



## But what's happening with all the data?

Existing research has explored:

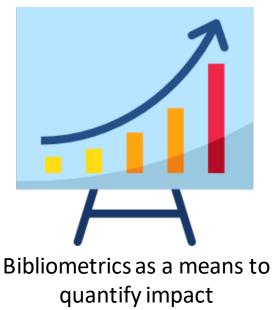
- Researchers' attitudes about data reuse
- Factors that influence researchers' choice to use a particular dataset
- Subjective experiences of researchers in a few particular disciplines

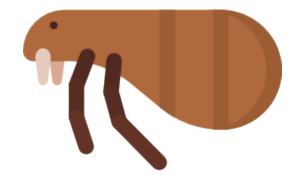


## Why does this matter?



Science as a credit economy





Quantifying impact of shared data enables reward to creators (no more "research parasites")



Sampling and data collection



#### A proxy for reuse: use requests

Requestor: Abbosh, Philip Affiliation: RESEARCH INST OF FOX CHASE CAN CTR Project: Identification of microbial genomic material in genitourinary and gastrointestinal tumors Date of approval: Nov 29, 2017 Request status: approved Research use statements (Hide)

Technical Research Use Statement

Non-Technical Research Use Statement

Aim: To identify viral, bacterial, or fungal organisms which are found in or on genitourinary (GU) or gastrointestinal (GI) cancer tissues from human patients. Hypothesis: Viral, bacterial, or fungal organisms are found in or on human cancer tissues. Rationale: Microscopic organisms have been identified in multiple tumor types and are hypothesized to affect the way that patients respond to cancer therapies. I hypothesize that microbes may be present in GI or GU cancers due to contact with urine or fecal material. To preliminarily investigate this hypothesis, whole genome sequencing (WGS) data from GI and GU cancers (BLCA, KICH, KIRC, KIRP, PRAD, TGCT, COAD) will be analyzed using PathSeq (Nature Biotechnology 29:393), or similar informatic algorithms which subtract out human sequences from WGS output to identify sequences from the remaining nonhuman reads using BLAST. In addition, we will perform validation of the identified organism by searching raw RNAseq reads, which may contain RNA from the same organisms. The controlled data in these databases will be used to identify microbial species within the tumor. We will then utilize the clinical metadata provided (age, gender, smoking history, and stage) and other parameters (RNA expression subtype) to conduct logistic regression and perform correlation analysis (MaAsLin) to identify the microbes with the strongest biological associations. This will be performed in collaboration with Dr. Leigh Greathouse (Baylor University, TX, USA). If certain species of microbes are found recurrently, especially if they are not known to be commensal in that organ or are known to be associated with other tumor types, then further experiments will be undertaken independent of TCGA to identify these organisms in tumors from cancer patients in my laboratory. Specifically, we will perform 16S rRNA hypervariable region deep sequencing, or design primers to amplify specific species identified in TCGA data from human biosamples prospectively collected at Fox Chase.

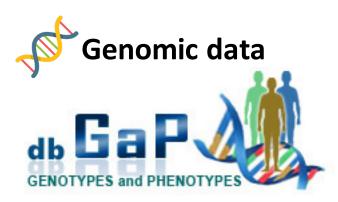
Sample dbGaP use request

|   | Requestor     | Affiliation                 | Studies | Request Date |
|---|---------------|-----------------------------|---------|--------------|
| Θ | Jessica Stahl | University of<br>Washington | CKiD    | 10/18/18     |

**Executive Summary:** The purpose of this study is to describe the burden of mental health disorders in children and adolescents with chronic kidney disease. Analysis will utilize the prospective cohort design of the chronic kidney disease in children (CKiD) dataset to assess existing mental health issues at the time of patient enrollment and to track subsequent incident diagnoses. All participants in the CKiD cohort will be included. Despite the large number of children with chronic kidney disease and known associations of CKD with worsened neurodevelopmental outcomes, as well as the association of chronic illness in general with higher rates of mental health conditions, this problem is not well described in CKD populations. This study will help provide information to address the mental health needs of children with chronic kidney disease.

#### Sample NIDDK use request

#### Repositories in the study



**Clinical data** 



National Institute of Diabetes and Digestive and Kidney Diseases

#### NIDDK Central Repository



## Data included in the study

|                                  | 📌 dbGaP |       |     | All combined |
|----------------------------------|---------|-------|-----|--------------|
| Datasets                         | 1,014   | 146   | 77  | 1,237        |
| Total requestors                 | 5,260   | N/A   | 253 | 5,513        |
| Total institutional affiliations | 1,230   | 1,001 | 195 | 2,426        |
| Total requests                   | 9,444   | 1,939 | 416 | 11,799       |
| Total datasets                   | 104,326 | 3,864 | 506 | 108,696      |
| requested                        |         |       |     |              |



What's happening with all these datasets?



## Requests by reuse type

| Category                      | Definition                                                                                                                                  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Original research study       | use of a single dataset to answer a new research question, distinct from the specific question for which the data were originally collected |
| Meta-analysis study           | aggregation or integration of the dataset with other datasets to answer a research question or conduct a formal meta-analysis               |
| Statistical methods study     | use of one or more datasets to develop or verify new statistical methodology                                                                |
| Software or tool development  | use of one or more datasets to develop, test, or validate a new software product or analysis tool                                           |
| study                         |                                                                                                                                             |
| Validation                    | use of one or more datasets to validate other findings, such as validating findings from an animal model in human subjects                  |
| Comparison or control         | use of one or more datasets to validate the investigator's own data, provide comparison, or serve as a control group                        |
| Reproducibility or reanalysis | reanalysis of one or more datasets to answer the same question for which the data were originally collected or                              |
| study                         | to verify the original study's findings                                                                                                     |
| Infrastructure                | use of one or more datasets to populate a database or repository for internal or institutional use                                          |

## Reuse types

| Reuse type               | - <b>√</b> dbGaP R | equests | NIDDK requests |        |
|--------------------------|--------------------|---------|----------------|--------|
|                          | Ν                  | %       | N              | %      |
| Original research        | 460                | 2.3%    | 282            | 50.27% |
| Meta-analysis            | 14,619             | 72.4%   | 139            | 24.78% |
| Comparison               | 858                | 4.3%    | 2              | 0.36%  |
| Validation               | 221                | 1.2%    | 14             | 2.5%   |
| Statistics               | 2,242              | 11.1%   | 84             | 15.0%  |
| Software                 | 1,097              | 5.4%    | 14             | 2.5%   |
| Infrastructure           | 644                | 3.2%    | 0              | 0%     |
| Re-analysis              | 11                 | 0.05%   | 2              | 0.36%  |
| Reuse type not specified | 2                  | 0.01%   | 24             | 4.28%  |

(χ2 = 4547, df = 8, *p* < 0.01)

### Automated coding for reuse topic

Search

Reset Help/FAQ

Features

The objective of our study is to determine whether the p53 status of various tumors wild type vs mutant correlates with up or downregulation of the mRNA expression of selected transposons and retrotransposons To do so we plan to look at the raw sequences of p53 in selected tumors via the TCGA on CGhub which will enable us to determine whether the tumor in each case is wild type or mutant Then we will query cBio Portal for the mRNA expression levels of selected transposons Our analysis will involve correlating the p53 status with the mRNA expression of each case and conventional statistical assessments will be applied At every step our proposed analyses will strictly adhere to all guidelines and restrictions outlined for use of these data sets We will not combine the requested datasets with others outside of the dbGaP and no inter institutional collaborations will be involved We will only be using the raw sequences of DNA and the mRNA expression levels in the analysis described above

Start PubMed Search

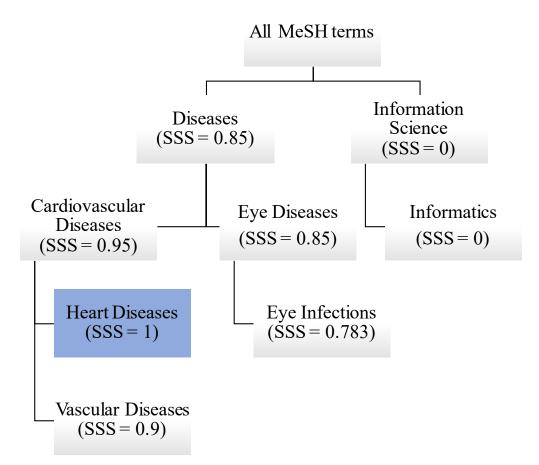
Export Data

#### MeSH Terms

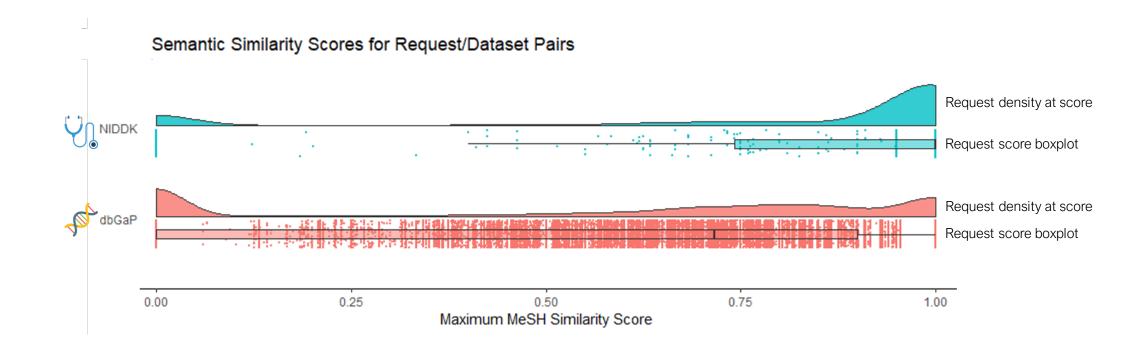
- **i** Retroelements
- Down-Regulation
- Tumor Suppressor Protein p53
- i Neoplasms 🔶
- **i** Biochemical Phenomena
- RNA, Messenger

NLM Medical Text Indexer: https://ii.nlm.nih.gov/MTI/

#### MeSH terms and semantic similarity



### Request/dataset topic similarity

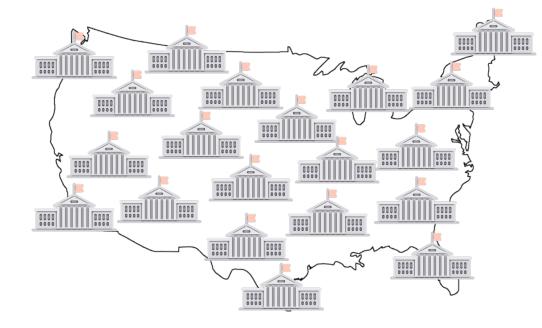


# Coding for career stage and institution location

| Name      | Institution     | Date      | Status     |
|-----------|-----------------|-----------|------------|
| Doe, John | Duke University | 15-Jan-14 | assoc_prof |
| Doe, John | Duke University | 25-Jan-17 | prof       |

| Institution Name     | # of requests | Latitude | Longitude | Country |
|----------------------|---------------|----------|-----------|---------|
| University of Oulu   | 10            | 65.093   | 25.4663   | Finland |
| deCODE Genetics, EHF | 78            | 64.1265  | -21.8174  | Iceland |

#### Calculating relative difference in composition

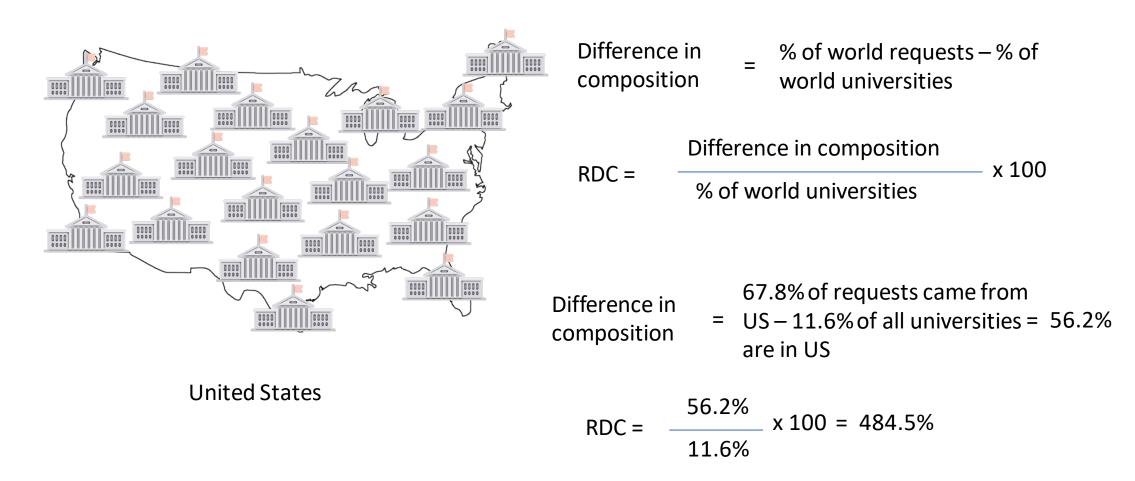




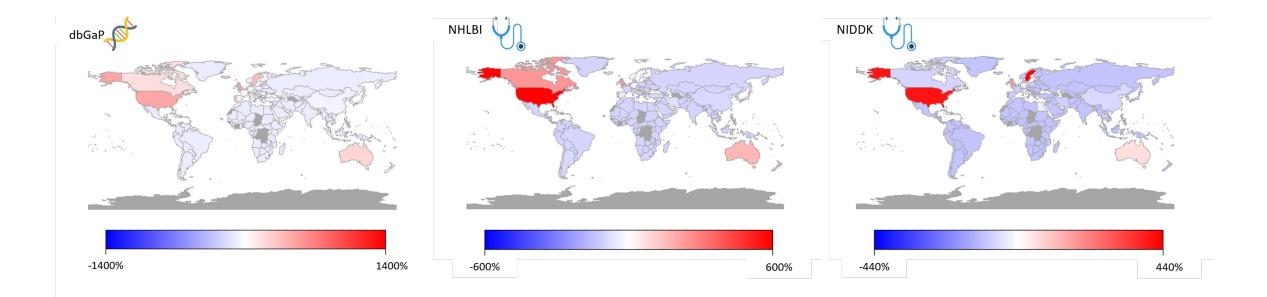
**United States** 

Liechtenstein

# Calculating relative difference in composition (RDC)



### RDC of requests/research presence



#### Most overrepresented countries

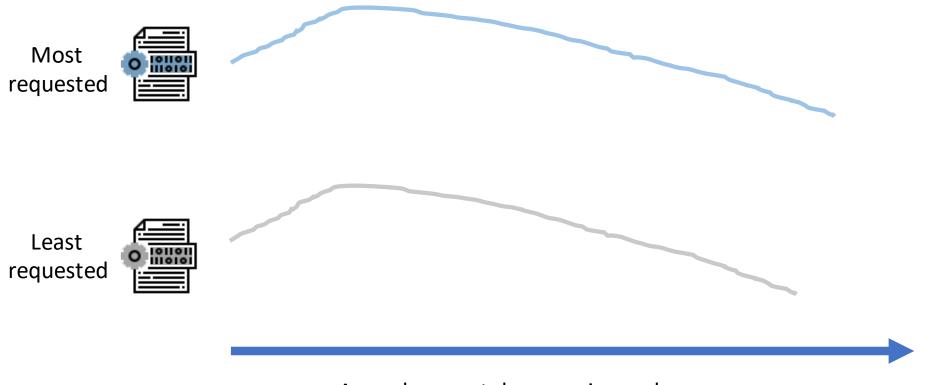
| Country        | University Count | db ک <mark>ک</mark> | GaP    |     | DDK   |       | LBI   |
|----------------|------------------|---------------------|--------|-----|-------|-------|-------|
|                |                  | N                   | RDC    | N   | RDC   | N     | RDC   |
| Australia      | 188              | 183                 | 221%   | 6   | 55%   | 35    | 170%  |
| Canada         | 355              | 301                 | 179%   | 2   | -72%  | 85    | 246%  |
| Cyprus         | 26               | 1                   | -89%   | 1   | 84%   | 0     | -100% |
| Finland        | 46               | 23                  | 65%    | 0   | -100% | 4     | 28%   |
| Germany        | 465              | 223                 | 58%    | 2   | -26%  | 22    | -32%  |
| Iceland        | 9                | 12                  | 337%   | 0   | -100% | 0     | -100% |
| Israel         | 42               | 77                  | 501%   | 0   | -100% | 10    | 248%  |
| Italy          | 239              | 86                  | 19%    | 5   | 2%    | 1     | -94%  |
| Luxembourg     | 3                | 14                  | 1,397% | 0   | -100% | 0     | -100% |
| Netherlands    | 133              | 106                 | 162%   | 2   | -26%  | 32    | 248%  |
| New Zealand    | 56               | 27                  | 60%    | 0   | -100% | 11    | 186%  |
| Qatar          | 9                | 0                   | -100%  | 0   | -100% | 1     | 56%   |
| Singapore      | 45               | 44                  | 224%   | 0   | -100% | 3     | -6%   |
| Sweden         | 46               | 63                  | 352%   | 5   | 431%  | 3     | -8%   |
| Switzerland    | 102              | 59                  | 90%    | 2   | -4%   | 4     | -42%  |
| United Kingdom | 280              | 471                 | 484%   | 16  | 179%  | 71    | 267%  |
| United States  | 3,257            | 5,773               | 484%   | 338 | 406%  | 1,556 | 592%  |

## Career status of requestors

| Career Stage                | Title               | Percent of<br>dbGaP requests | Percent of<br>NIDDK requests |  |  |  |
|-----------------------------|---------------------|------------------------------|------------------------------|--|--|--|
| Pre-professional            | Student             | 0.7%                         | 1.8%                         |  |  |  |
|                             | Fellow              | 0.7%                         | 3.1%                         |  |  |  |
|                             | Total               | 1.4%                         | 4.9%                         |  |  |  |
| Early career                | Assistant Professor | 19.1%                        | 27.6%                        |  |  |  |
|                             | Resident Physician  | 0%                           | 1.1%                         |  |  |  |
|                             | Lecturer            | 0.07%                        | 0.4%                         |  |  |  |
|                             | Instructor          | 0.07%                        | 0%                           |  |  |  |
|                             | Total               | 19.2%                        | 29.1%                        |  |  |  |
| Mid-Career                  | Associate Professor | 15.4%                        | 13%                          |  |  |  |
|                             | Scientist           | 5.7%                         | 3.9%                         |  |  |  |
|                             | Attending Physician | 0%                           | 0.2%                         |  |  |  |
|                             | Manager             | 0.7%                         | 0.4%                         |  |  |  |
|                             | Total               | 21.8%                        | 17.5%                        |  |  |  |
| Established                 | Professor           | 26.8%                        | 24%                          |  |  |  |
|                             | Director            | 8.5%                         | 5.5%                         |  |  |  |
|                             | Executive           | 3%                           | 5.1%                         |  |  |  |
|                             | Senior Scientist    | 10.3%                        | 6.7%                         |  |  |  |
|                             | Total               | 48.6%                        | 41.3%                        |  |  |  |
| Unknown                     |                     | 9%                           | 5.9%                         |  |  |  |
| (-2, 01, 10, 12,, < 0, 001) |                     |                              |                              |  |  |  |

 $(\chi 2 = 81, df = 12, p < 0.001)$ 

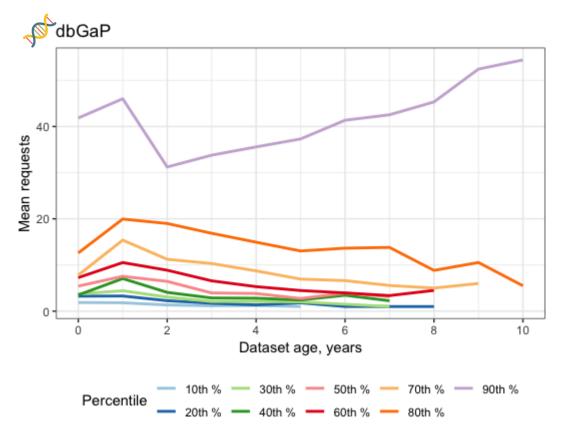
### Tracking dataset requests over time



## Predictive power of early requests

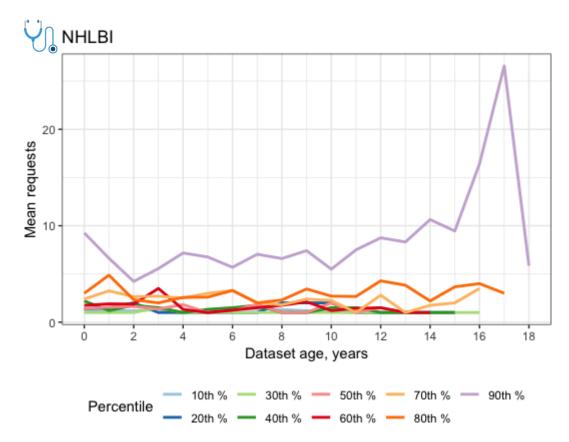


#### Requests by year, dbGaP



| Model       | R-squared | p-value |
|-------------|-----------|---------|
| One year    | 0.73      | <0.001  |
| Two years   | 0.8       | <0.001  |
| Three years | 0.87      | <0.001  |

#### Requests over time, NHLBI



| Model       | R-squared | p-value |
|-------------|-----------|---------|
| One year    | 0.8       | <0.001  |
| Two years   | 0.89      | <0.001  |
| Three years | 0.96      | <0.001  |

## Determining highly requested topics

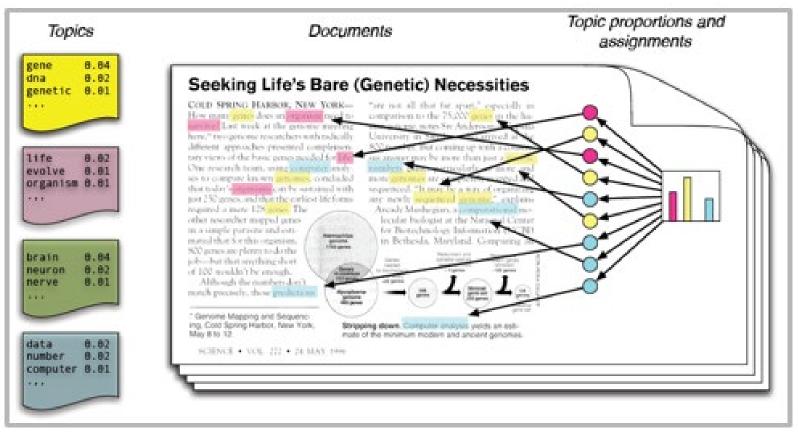
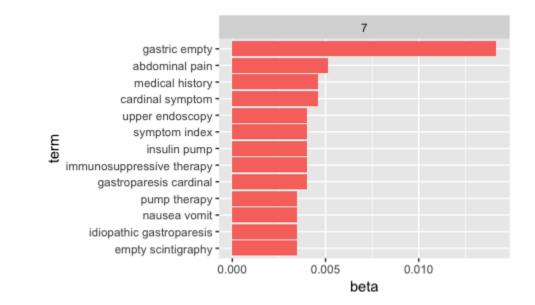


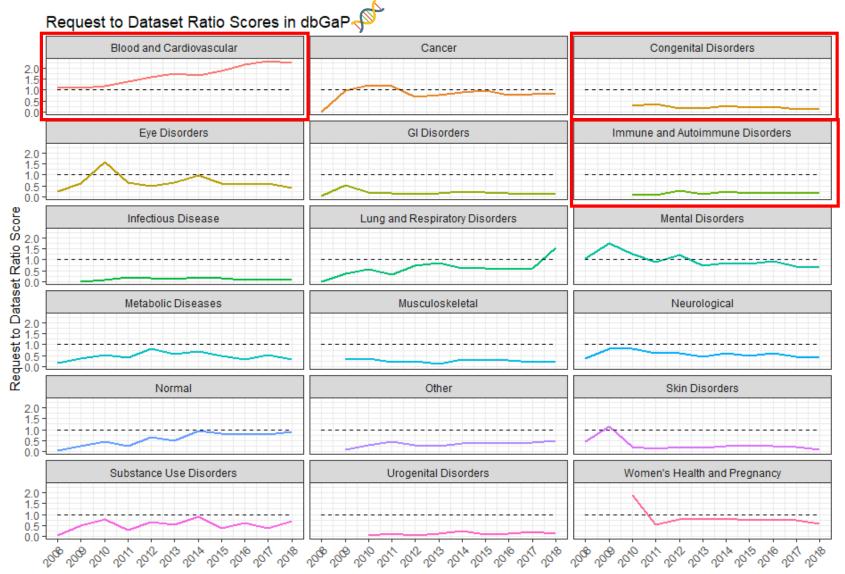
Image source: https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/

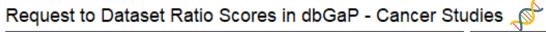
### Sample topicmodels output

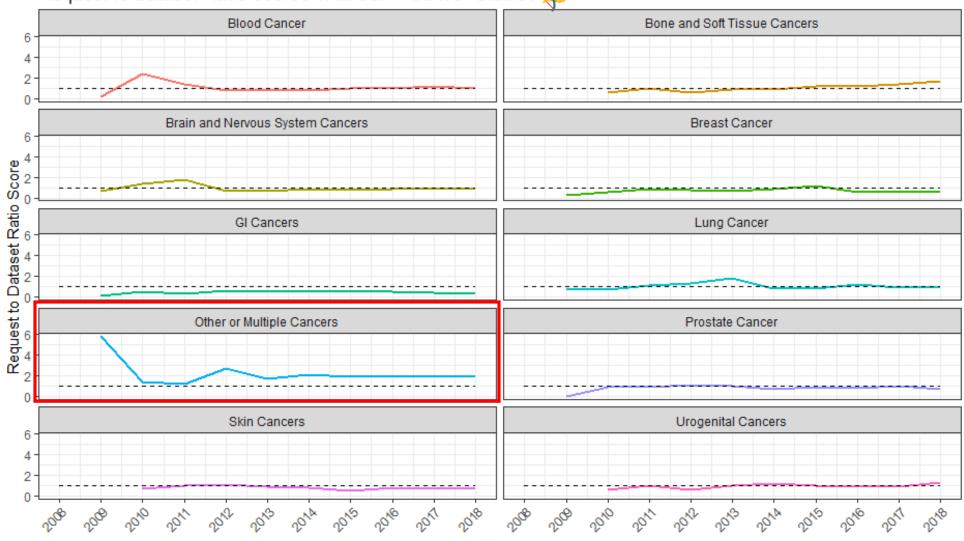


## Request to Dataset (RTD) Ratio

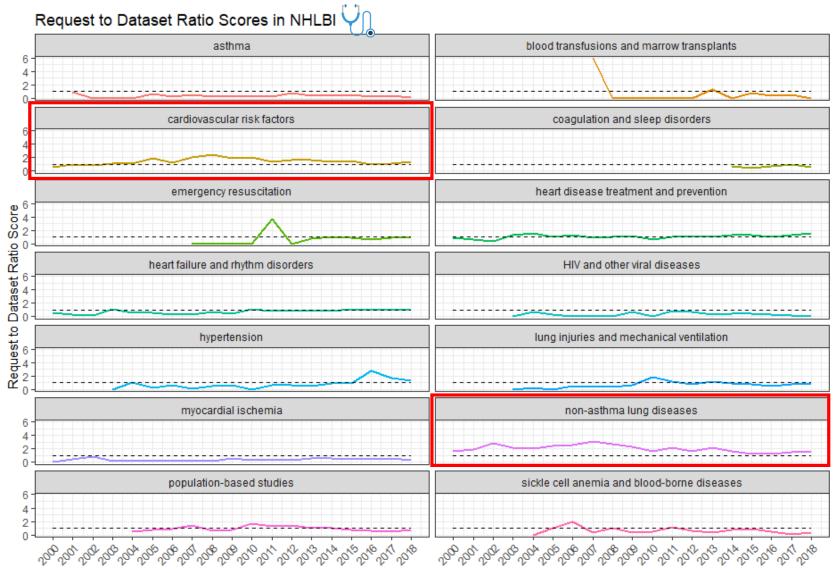


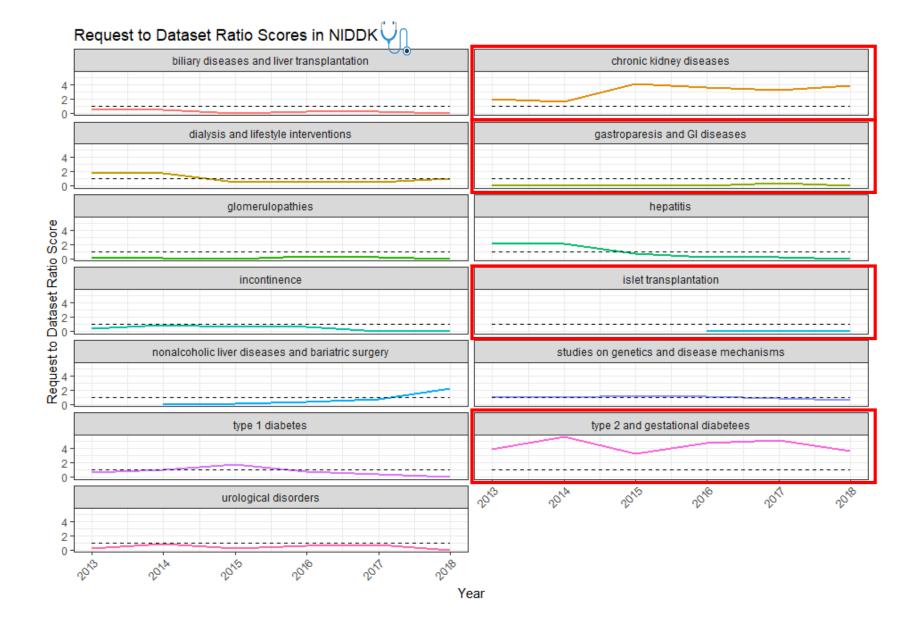






Year









## For researchers: sharing concerns may be unfounded

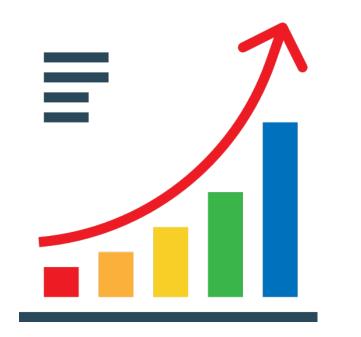




Getting "scooped" may not be a significant threat

Replication to refute results is not a major reuse of these datasets

## For repositories: evidence for preservation and curation decisions



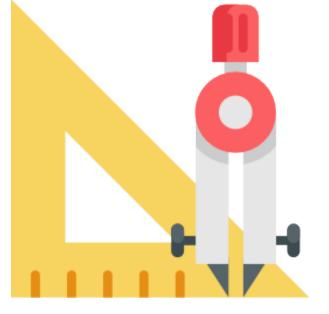


Early requests for datasets are a predictor for long-term reuse

Certain topics may be expected to be more reused than others

### For funders and institutions



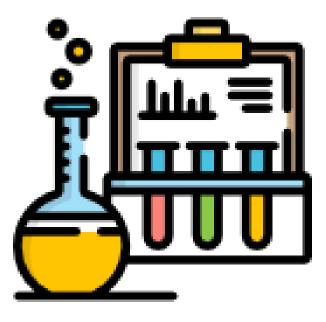


Datasets are reused in many ways – should creators be rewarded equally for all of them? Need to carefully define metrics to avoid pitfalls such as those experienced in bibliometrics

#### Limitations



Unclear how closely requests track to actual reuse of datasets



Limited generalizability beyond biomedical repositories

**NLM Office of Strategic Initiatives** Data Science & Open Science Team

Michael Huerta, PhD

Director

#### Rebecca Goodwin, JD

Policy Analyst & Open Science Specialist

#### Lisa Federer, PhD, MLIS

Data Science & Open Science Librarian

#### Teresa Zayas-Caban, PhD

Coordinator, NIH FHIR Acceleration Chief Scientist, ONC, DHHS

#### Maryam Zaringhalam, PhD

Data Science & Open Science Specialist

Tony Chu, PhD, MLIS

**Information Scientist** 

#### **Questions?**

CH T E

816

Lisa Federer, PhD, MLIS Lisa.Federer@nih.gov @lisafederer

Image source: free photobank torange.biz (CC-BY)